CS 188: Artificial Intelligence

Lecture 7: Utility Theory

Pieter Abbeel - UC Berkeley Many slides adapted from Dan Klein

Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent's preferences
- Where do utilities come from?
- In a game, may be simple (+1/-1)
- Utilities summarize the agent's goals
- Theorem: any "rational" preferences can be summarized as a utility function
- We hard-wire utilities and let behaviors emerge
- Why don't we let agents pick utilities?
- Why don't we prescribe behaviors?

Utilities: Uncertain Outcomes

Preferences

Rational Preferences

- We want some constraints on
preferences before we call $\quad(A \succ B) \wedge(B \succ C) \Rightarrow(A \succ C)$ them rational
- For example: an agent with intransitive preferences can be induced to give away all of its money
- If $B>C$, then an agent with C would pay (say) 1 cent to get B
- If $A>B$, then an agent with B would pay (say) 1 cent to get A
- If $C>A$, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

- Preferences of a rational agent must obey constraints.
- The axioms of rationality:

Orderability

$$
(A \succ B) \vee(B \succ A) \vee(A \sim B)
$$

Transitivity
$(A \succ B) \wedge(B \succ C) \Rightarrow(A \succ C)$
Continuity
$A \succ B \succ C \Rightarrow \exists p[p, A ; 1-p, C] \sim B$
Substitutability
$A \sim B \Rightarrow[p, A ; 1-p, C] \sim[p, B ; 1-p, C]$
Monotonicity
$A \succ B \Rightarrow$
$(p \geq q \Leftrightarrow[p, A ; 1-p, B] \succeq[q, A ; 1-q, B])$

- Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

- Theorem:
- [Ramsey, 1931; von Neumann \& Morgenstern, 1944]
- Given any preferences satisfying these constraints, there exists a real-valued function U such that

$$
\begin{aligned}
& U(A) \geq U(B) \Leftrightarrow A \succeq B \\
& U\left(\left[p_{1}, S_{1} ; \ldots ; p_{n}, S_{n}\right]\right)=\sum_{i} p_{i} U\left(S_{i}\right)
\end{aligned}
$$

- Maximum expected utility (MEU) principle:
- Choose the action that maximizes expected utility
- Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
- E.g., a lookup table for perfect tictactoe, reflex vacuum cleaner

Utility Scales

- Normalized utilities: $u_{+}=1.0, u_{-}=0.0$
- Micromorts: one-millionth chance of death, useful for paying to reduce product risks, etc.
- QALYs: quality-adjusted life years, useful for medical decisions involving substantial risk
- Note: behavior is invariant under positive linear transformation

$$
U^{\prime}(x)=k_{1} U(x)+k_{2} \quad \text { where } k_{1}>0
$$

- With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes

Human Utilities

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment of human utilities:
- Compare a state A to a standard lottery L_{p} between
- "best possible prize" u_{+}with probability p
- "worst possible catastrophe" u with probability 1-p
- Adjust lottery probability p until $A \sim L_{p}$
- Resulting p is a utility in $[0,1]$
pay \$30

Example: Insurance

- Consider the lottery [0.5,\$1000; 0.5,\$0]
- What is its expected monetary value? (\$500)
- What is its certainty equivalent?
- Monetary value acceptable in lieu of lottery
- \$400 for most people
- Difference of $\$ 100$ is the insurance premium
- There' s an insurance industry because people will pay to reduce their risk
- If everyone were risk-neutral, no insurance needed!
- Utility curve: for what probability p am I indifferent between
- Some sure outcome x
- A lottery [p,\$M; (1-p),\$0], M large

Example: Human Rationality?

- Famous example of Allais (1953)
- A: [0.8,\$4k; 0.2,\$0]
- B: [1.0,\$3k; 0.0,\$0]
- C: [0.2,\$4k; 0.8,\$0]
- D: [0.25,\$3k; 0.75,\$0]
- Most people prefer B > A, C > D
- But if $U(\$ 0)=0$, then
- $B>A \Rightarrow U(\$ 3 k)>0.8 U(\$ 4 k)$
- $C>D \Rightarrow 0.8 U(\$ 4 k)>U(\$ 3 k)$

